Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 3 de 3
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Int J Mol Sci ; 23(21)2022 Oct 27.
Статья в английский | MEDLINE | ID: covidwho-2250840

Реферат

The inflammasome complex is a key part of chronic diseases and acute infections, being responsible for cytokine release and cell death mechanism regulation. The SARS-CoV-2 infection is characterized by a dysregulated cytokine release. In this context, the inflammasome complex analysis within SARS-CoV-2 infection may prove beneficial to understand the disease's mechanisms. Post-mortem minimally invasive autopsies were performed in patients who died from COVID-19 (n = 24), and lung samples were compared to a patient control group (n = 11) and an Influenza A virus H1N1 subtype group from the 2009 pandemics (n = 10). Histological analysis was performed using hematoxylin-eosin staining. Immunohistochemical (IHC) staining was performed using monoclonal antibodies against targets: ACE2, TLR4, NF-κB, NLRP-3 (or NALP), IL-1ß, IL-18, ASC, CASP1, CASP9, GSDMD, NOX4, TNF-α. Data obtained from digital analysis underwent appropriate statistical tests. IHC analysis showed biomarkers that indicate inflammasome activation (ACE2; NF-κB; NOX4; ASC) were significantly increased in the COVID-19 group (p < 0.05 for all) and biomarkers that indicate cell pyroptosis and inflammasome derived cytokines such as IL-18 (p < 0.005) and CASP1 were greatly increased (p < 0.0001) even when compared to the H1N1 group. We propose that the SARS-CoV-2 pathogenesis is connected to the inflammasome complex activation. Further studies are still warranted to elucidate the pathophysiology of the disease.


Тема - темы
COVID-19 , Influenza A Virus, H1N1 Subtype , Humans , Inflammasomes/metabolism , SARS-CoV-2 , Interleukin-18 , NF-kappa B/metabolism , Angiotensin-Converting Enzyme 2 , Autopsy , Influenza A Virus, H1N1 Subtype/metabolism , Caspase 1/metabolism , Lung/metabolism , Cytokines/metabolism , Biopsy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
2.
Stem Cell Res Ther ; 13(1): 145, 2022 04 04.
Статья в английский | MEDLINE | ID: covidwho-1775335

Реферат

BACKGROUND: With the widespread of Coronavirus Disease 2019 pandemic, in spite of the newly emerging vaccines, mutated strains remain a great obstacle to supportive and preventive measures. Coronavirus 19 survivors continue to face great danger of contacting the disease again. As long as no specific treatment has yet to be approved, a great percentage of patients experience real complications, including among others, lung fibrosis. High oxygen inhalation especially for prolonged periods is per se destructive to the lungs. Nevertheless, oxygen remains the first line support for such patients. In the present study we aimed at investigating the role of amniotic fluid-mesenchymal stem cells in preventing versus treating the hyperoxia-induced lung fibrosis in rats. METHODS: The study was conducted on adult albino rats; 5 pregnant female rats were used as amniotic fluid donors, and 64 male rats were randomly divided into two groups: Control group; where 10 rats were kept in normal atmospheric air then sacrificed after 2 months, and hyperoxia-induced lung fibrosis group, where 54 rats were exposed to hyperoxia (100% oxygen for 6 h/day) in air-tight glass chambers for 1 month, then randomly divided into the following 5 subgroups: Hyperoxia group, cell-free media-treated group, stem cells-prophylactic group, stem cells-treated group and untreated group. Isolation, culture and proliferation of stem cells were done till passage 3. Pulmonary function tests, histological examination of lung tissue under light and electron microscopes, biochemical assessment of oxidative stress, IL-6 and Rho-A levels, and statistical analysis of data were performed. F-test (ANOVA) was used for normally distributed quantitative variables, to compare between more than two groups, and Post Hoc test (Tukey) for pairwise comparisons. RESULTS: Labelled amniotic fluid-mesenchymal stem cells homed to lung tissue. Stem cells administration in the stem cells-prophylactic group succeeded to maintain pulmonary functions near the normal values with no significant difference between their values and those of the control group. Moreover, histological examination of lung tissues showed that stem cells-prophylactic group were completely protected while stem cells-treated group still showed various degrees of tissue injury, namely; thickened interalveolar septa, atelectasis and interstitial pneumonia. Biochemical studies after stem cells injection also showed decreased levels of RhoA and IL-6 in the prophylactic group and to a lesser extent in the treated group, in addition to increased total antioxidant capacity and decreased malondialdehyde in the stem cells-injected groups. CONCLUSIONS: Amniotic fluid-mesenchymal stem cells showed promising protective and therapeutic results against hyperoxia-induced lung fibrosis as evaluated physiologically, histologically and biochemically.


Тема - темы
COVID-19 , Hyperoxia , Amniotic Fluid , Animals , Female , Humans , Hyperoxia/complications , Hyperoxia/pathology , Male , Pregnancy , Rats , Rats, Sprague-Dawley , Stem Cells/pathology
3.
Int J Mol Sci ; 22(4)2021 Feb 11.
Статья в английский | MEDLINE | ID: covidwho-1079663

Реферат

Lysosomotropism is a biological characteristic of small molecules, independently present of their intrinsic pharmacological effects. Lysosomotropic compounds, in general, affect various targets, such as lipid second messengers originating from lysosomal enzymes promoting endothelial stress response in systemic inflammation; inflammatory messengers, such as IL-6; and cathepsin L-dependent viral entry into host cells. This heterogeneous group of drugs and active metabolites comprise various promising candidates with more favorable drug profiles than initially considered (hydroxy) chloroquine in prophylaxis and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections/Coronavirus disease 2019 (COVID-19) and cytokine release syndrome (CRS) triggered by bacterial or viral infections. In this hypothesis, we discuss the possible relationships among lysosomotropism, enrichment in lysosomes of pulmonary tissue, SARS-CoV-2 infection, and transition to COVID-19. Moreover, we deduce further suitable approved drugs and active metabolites based with a more favorable drug profile on rational eligibility criteria, including readily available over-the-counter (OTC) drugs. Benefits to patients already receiving lysosomotropic drugs for other pre-existing conditions underline their vital clinical relevance in the current SARS-CoV2/COVID-19 pandemic.


Тема - темы
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Discovery , Lysosomes/drug effects , SARS-CoV-2/drug effects , Small Molecule Libraries/pharmacology , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/metabolism , COVID-19/virology , Chlorpromazine/pharmacokinetics , Chlorpromazine/pharmacology , Chlorpromazine/therapeutic use , Cytokine Release Syndrome/drug therapy , Drug Discovery/methods , Drug Repositioning/methods , Fluvoxamine/pharmacokinetics , Fluvoxamine/pharmacology , Fluvoxamine/therapeutic use , Humans , Hydroxychloroquine/pharmacokinetics , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Interleukin-1/antagonists & inhibitors , Interleukin-1/immunology , Interleukin-6/antagonists & inhibitors , Interleukin-6/immunology , Lung/drug effects , Lung/immunology , Lung/metabolism , Lung/virology , Lysosomes/immunology , Lysosomes/metabolism , Lysosomes/virology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/therapeutic use , Virus Replication/drug effects
Критерии поиска